Linear Programming Relaxations of Quadratically Constrained Quadratic Programs
نویسندگان
چکیده
We investigate the use of linear programming tools for solving semidefinite programming relaxations of quadratically constrained quadratic problems. Classes of valid linear inequalities are presented, including sparse PSD cuts, and principal minors PSD cuts. Computational results based on instances from the literature are presented.
منابع مشابه
A semidefinite relaxation scheme for quadratically constrained
Semidefinite optimization relaxations are among the widely used approaches to find global optimal or approximate solutions for many nonconvex problems. Here, we consider a specific quadratically constrained quadratic problem with an additional linear constraint. We prove that under certain conditions the semidefinite relaxation approach enables us to find a global optimal solution of the unde...
متن کاملReformulating Mixed-Integer Quadratically Constrained Quadratic Programs
It is well known that semidefinite programming (SDP) can be used to derive useful relaxations for a variety of optimisation problems. Moreover, in the particular case of mixed-integer quadratic programs, SDP has been used to reformulate problems, rather than merely relax them. The purpose of reformulation is to strengthen the continuous relaxation of the problem, while leaving the optimal solut...
متن کاملRobust SOS-Convex Polynomial Programs: Exact SDP Relaxations
This paper studies robust solutions and semidefinite linear programming (SDP) relaxations of a class of convex polynomial optimization problems in the face of data uncertainty. The class of convex optimization problems, called robust SOS-convex polynomial optimization problems, includes robust quadratically constrained convex optimization problems and robust separable convex polynomial optimiza...
متن کاملConvex quadratic relaxations of nonconvex quadratically constrained quadratic programs
Nonconvex quadratic constraints can be linearized to obtain relaxations in a wellunderstood manner. We propose to tighten the relaxation by using second order cone constraints, resulting in a convex quadratic relaxation. Our quadratic approximation to the bilinear term is compared to the linear McCormick bounds. The second order cone constraints are based on linear combinations of pairs of vari...
متن کاملFaster, but weaker, relaxations for quadratically constrained quadratic programs
We introduce a new relaxation framework for nonconvex quadratically constrained quadratic programs (QCQPs). In contrast to existing relaxations based on semidefinite programming (SDP), our relaxations incorporate features of both SDP and second order cone programming (SOCP) and, as a result, solve more quickly than SDP. A downside is that the calculated bounds are weaker than those gotten by SD...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1206.1633 شماره
صفحات -
تاریخ انتشار 2010